研究紹介

T2K実験 2016年夏のハイライト

京都大学高エネルギー物理学研究室
市 川 温 子
ichikawa@scphys.kyoto-u.ac.jp

ロチェスター大学
岩 本 康 之
kiwamoto@pas.rochester.edu

KEK 素粒子原子核研究所
坂 下 健
kensh@post.kek.jp

2016 年 (平成 28 年) 11月14日

1 イントロダクション

T2K(東海-神岡間長基線ニュートリノ振動実験)では、茨城県東海村にあるJ-PARC大強度陽子加速器を用いてニュートリノを大量に生成し、295km先の岐阜県飛騨市神岡にあるスーパーカミオカンデに向けて飛ばし、飛行中に起こるニュートリノ振動について研究している。これまでの高エネルギー反応数でいくつかの開発を見たT2K実験の研究について紹介してきた[1, 2, 3, 4, 5]。

T2K実験では、2013年までにニュートリノを電子ニュートリノが出現することを確認し[6], 2014年から今いる(2016年)の夏まで反ニュートリノビームを生成して実験を進めてきた。ニュートリノと反ニュートリノで(反)電子ニュートリノの出現確率が異なれば、クォークにおける小林益川モデル以外で初めてCP対称性の破れが見つかったことになる。三世代間の振動の枠組では、CPの破れを通常CP位相δCPで導入するが、この値によっては最大27%の非対称があることがわかっている。反ニュートリノビームで蓄積した積分陽子数(Protons-On-Target, POT)は、2010年から2013年のニュートリノビームデータとほぼ同等の7.5×10^{20}個となった。途中で大震災による運転停止期間等があったとはいえ、約2年間でこれだけのデータ量が蓄積できたのは、ビーム強度が上がっているためである。このためでは2016年前半の運転よもやま話、夏のリリースハイライト、そしてT2K phase IIに向けた展望を紹介する。

2 運転よもやま話

図1にT2K実験が物理データを取り始めた2010年1月から2016年5月までのビーム強度と積分陽子数のプロットを示す。

2015年5月までの運転の終盤に、ニュートリノ生成標的を冷却するヘリウム配管から微量ながらもヘリウムのリックが観測された。曲げた配管の残留応力がビーム運転による温度上昇で解放され、セラミック接合部が損傷されたと推察された。標的を共同開発したRALグループが急就、デザインを変更した配管を製作し、TRIUMFのリモートメンテナンスの専門家協力のもとマイピュレータ等を用いて損傷した配管を交換した(図2)。できる限り早期の運転再開を目指した関係者の懸命の努力で2016年1月からの運転再開にこぎつけた。

加速器ビーム強度300kW～350kWで運転が再開され、メインリング(MR)偏置電磁石の1台で層間短絡が生じて急減、地上にある同仕様の磁石と入れ替えたり

図1: T2K実験のこれまでのビーム強度と積分陽子数。
(35 トンの磁石の入れ替え作業！)。MR 電磁石電源のトランスに小動物が侵入して 1 次側が短絡したり、ニュー
トリノでは地下の高放射線環境に設置したネットワーク機器の暴走で制御ネットワークがダウナしてビーム運
転できなくなった、何度もあった。しかし最終的にビームパワー 425kW での運転が達成できた。この
ビームパワー増強は、加速器の方々の多大なる努力の結果である。

現実、J-PARC MR のビーム強度を制限しているのは
ビームロスである。MR のコリメーターの許容ロス容量や
機器メンテナンスを考えたときの残留放射線上限か
ら、許容できるビームロス量が決まる。そのためビーム
強度を上げるためには、ビームロスを十分小さく減らす
調整が必要となる。今後の MR ビーム強度増強に向けて
ビームロスが生じている原因をひとつずつ理解することも
重要であり、加速器グループでは MR 加速器のモデル
構築とそのモデルシミュレーションにとどまったビーム
スタディが行われている。今回の運転期間でも、そのよ
うな方法でビームロスの原因理解と低減を実現した。この
取り組みについては、加速器グループと実験グループ
の間で何度も議論の機会を持って、わかりやすく説明し
ていた。ロスの原因についての考察とシミュレーション
スタディから考えられるその対策について説明を
聞いたあとに加速器の方々のビームスタディを見ている
と、（スタディの専門的なところまで理解できていない
が）MR 加速器の理解が深まっていく様子が分かり、楽
しい経験であった。

今後も T2K 実験にとってビーム強度増強は運転時間
とともに重要である。現在のビーム強度 425kW は、繰り
返しあたりの陽子数では 2.2 × 10^{14} になる。これは陽子
シンクロトロンでは世界最高値である。J-PARC MR で
は、2018 年度に加速器繰り返し時間を現在の 2.48 秒か
ら 1.3 秒に、またその先には 1.1 秒まで短くする計画で、
それに対応した新しい電磁石電源を現在試験中である。
1.3 秒繰り返しなければ、現在の陽子数で既に MR ビー
ム強度の初期設計値である 750kW 以上になっているが、
今後も繰り返しあたりの陽子数をビームロスを低減しな
がら徐々に増やしていく。現在の計画では 3.2 × 10^{14} ま
で陽子数を増やして、2025 年ごろまでに 1.3 MW のビー
ム強度を目指す。

3 反ニュートリノデータを加えた最新結果

ここでは、2016 年夏までに取得した 7.48 × 10^{20}POT
のニュートリノと 7.47 × 10^{20}POT の反ニュートリノの
全データを用いた解析の説明をする。

振動解析は、スーパーカミオカンデ (SK) で予測される
ニュートリノ事象数と、それらのエネルギースペクトル
や運動量・散乱角分布を、実際に SK で観測されたニュー
トリノ事象のものと比較することによって行われる。予測には不確定性を考慮しなければいけないが、外部実験データをもとに構築されたニュートリノフラックスの予測、ニュートリノ原子核反応モデル、前置検出器の測定結果を反映させることで、より正確にSKでのニュートリノ事象を予測している。前置ニュートリノ検出器の測定及びSKでのニュートリノ事象選択の詳細は過去の記事[4]を参照していただきたい。

SKでの観測事象のうち消失現象を測定するνμサンプルは混合角の関数sin²2θ23と質量固有価二乗差Δm232に感度がある。νεサンプルの出現在象でありその出現確率はθ23、Δm232の他にsin²2θ13の関数となる。それだけではなく、さらに三世代の振動の干渉項としてsinδCPTに比例する項が加わり、ニュートリノと反ニュートリノで出現確率に違いが生じる。

これまでの解析では、ニュートリノビームで得られたデータからνμ事象、νν事象を選択し、同時にフィットすることで振動パラメータを決定してきた。今回の解析では、さらに反ニュートリノビームのデータも加えて同時にフィットを行った。表1は反ニュートリノビームでの選択現象に対する系統誤差をまとめたものである。ニュートリノビームでの誤差も、大まかには同じような大きさである。

3.1 標準的な振動解析結果

ニュートリノのCP位相（δCPT）として4つ以上の異なる値を仮定した場合にSKで期待される事象数と、実際に観測された事象数をまとめたものが表2である。期待される事象数はいずれも順階層の質量順序1を仮定した場合のものである。7.48×10^{20} POTのニュートリノビームのデータに対し、SKで実際に観測されたνμ事象数は135.νε事象数は32で、7.47×10^{20} POTの反ニュートリノビームのデータに対し、SKで実際に観測されたνν消失事象数は66、νε出現事象数は4であった。それぞれの観測結果を、振動がない場合および振動の costumes 推定でのエネルギーの分布と比較したもののが図3である。

表1：反ニュートリノビームでの事象数予測に対する系統誤差。

<table>
<thead>
<tr>
<th>(\delta_{CPT})</th>
<th>(\nu_\mu \rightarrow \nu_e)</th>
<th>(\nu_\mu \rightarrow \nu_\mu)</th>
<th>(\bar{\nu}_\mu \rightarrow \bar{\nu}_e)</th>
<th>(\bar{\nu}\mu \rightarrow \bar{\nu}\mu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{\pi}{2})</td>
<td>28.7</td>
<td>135.8</td>
<td>6.0</td>
<td>64.2</td>
</tr>
<tr>
<td>(0)</td>
<td>24.2</td>
<td>135.5</td>
<td>6.9</td>
<td>64.1</td>
</tr>
<tr>
<td>(\frac{\pi}{2})</td>
<td>19.6</td>
<td>135.7</td>
<td>7.7</td>
<td>64.4</td>
</tr>
<tr>
<td>(\pi)</td>
<td>24.1</td>
<td>136.0</td>
<td>6.8</td>
<td>64.4</td>
</tr>
</tbody>
</table>

表2：ニュートリノビームと反ニュートリノビームで期待される事象数と実際に観測された事象数をまとめたもの。

図3：SKで観測された\(\nu_\mu/\nu_\mu \)消失事象（ばら棒つきの点）のエネルギー分布。

ニュートリノ振動がない場合と振動の costumes 推定での予測が重ねられている。下の図はニュートリノ振動がない場合との比。

1ニュートリノの3つの質量固有値がm_1 < m_2 < m_3 の場合を順階層、m_3 < m_1 < m_2 の場合を逆階層と呼ぶ。どちらもまだわかっていない。質量順序によって地中を飛行する間に物質から感じるポテンシャルが異なるため振動確率が影響を受ける。
図4: SKで観測された$\nu_e/\bar{\nu}_e$出現事象（誤差棒つきの点）のエネルギーデータ、ニュートリノ振動がない場合とおよび振動の最尤推定点での予測が重ねられている。下の図はニュートリノ振動がない場合との比較。

$\Delta m^2_{32} = 2.545 \times 10^{-3} \text{eV}^2/c^4$であった。図5にはSK大気ニュートリノ測定[7], MINOS+実験[8], NOνA実験[9], IceCube大気ニュートリノ測定[10]の信頼領域も示した。いずれも90%信頼度で無矛盾であるが、NOνAの最尤推定点は最大合算45°からずれていて興味深い。今後数年、T2KとNOνAで精度を上げていった時にどうなるのか楽しみである。

CP相位の解析結果も見てみよう。$\sin^2 \theta_{13}$とδ_{CP}に対する信頼領域を図6に示した。$\sin^2 \theta_{13}$が0から1の間の値を取る。δ_{CP}が0から2πの間の値を取る。図6はニュートリノビームと反ニュートリノビームの信頼領域を示している。

3.2 ν_{μ}と$\bar{\nu}_{\mu}$消失現象の解析

反ニュートリノモードの統計の向上に伴い、ν_{μ}と$\bar{\nu}_{\mu}$消失現象の独立解析を更新した。$\sin^2 \theta_{23}$とΔm^2_{32}をニュートリノビームと反ニュートリノビームで独立に扱うことができる。CPT定理により消失現象はニュートリノと反ニュートリノで厳密に同じではないはずでなければならず、厳密に解釈することは不可能なことを示す。

T2K実験の結果を示す。T2Kの実験結果はCPTを破ることに反している。
図 6: $\sin^2 \theta_{13}$ と δ_{CP} に対する信頼領域（線）と最尤推定点（点）。質量順序の順階層（黒）と逆階層（赤）のそれぞれの場合について表示している。原子炉実験からの $\sin^2 \theta_{13}$ に対する制限（0.085 ± 0.005[11]）が描かれた領域で示されている。

図 7: 太陽ニュートリノおよび原子炉ニュートリノの測定結果を用い T2K 実験で得られた δ_{CP} の $\Delta \chi^2$ 分布。順階層（黒）と逆階層（赤）の質量順序を仮定した結果を載せている。Feldman-Cousins の方法[12]を用いて得られた δ_{CP} の 90%信頼領域（垂直線内）の領域を示す。

信頼領域も示している。前回の解析結果[1]と同様、ニュートリノと反ニュートリノで振動パラメータの有意な違いは観測されなかった。

4 CP 対称性の破れの 3σ 発見を目指して

長基線加速器ニュートリノ振動実験によって、レプトン・セクターの CP の破れを測定する可能性が真面目に議論され始めたのは 1999 年頃である。その時点では、この記事の著者は全員学生（小学を含む）であった。当時、T2K 実験初代実験代表者の西川公一郎氏から "電子ニュートリノの出現を捉えることができたら、ハイパーカミオンを生成し CP の破れを測ろう！" と言われたことを著者の一人は覚えている。当時の予想では、CP の破れを "discover" するにはハイパーカミオンが必须と考えていた。これは今でも正しいが、もしすると、その前に、"evidence" が見える可能性が出てきた、というのが現在の T2K 実験の示す所である。

ここまでのセクションにあるように、CP 位相、質量の順序ともに、自然の $\nu_\mu \to \nu_e$ を好み、$\bar{\nu}_\mu \to \bar{\nu}_e$ を抑制しているように見える。まだだが統計が足りずかなにぎりの可能性はあるが、もしその通りに CP 対称性が最大に破れていて、T2K 実験を数年延長することで CP 対称性の破れの "evidence" が見えるのであれば、見ない手がわかる、いやないか。次世代長基線加速器ニュートリノ振動実験であるハイパーカミオン計画や米国の DUNE 計画が注目されるのは、早くても 2026 年頃である。T2K 実験をその頃までに延長して、"evidence=3σ での発見" に手を届かせるためにはどうすればいいであろうか、というような議論が 2015 年にグループ内で始まった。日本のニュートリノ振動実験の戦略としても、ハイパーカミオンが稼働する頃に速かに日本の PARC 加速器を大規模化するには、長期を設けて加速器を運転、向上しつづけることが重要である。

4.1 何が必要か？

CP が最大限に破れていて ($\delta_{CP} = -\pi/2$) 質量順序が順階層という幸運な場合に、CP の破れを 3σ で測定する
それは、単にT2K実験をハイパーリンゴカンデが完成する2026年まで延長すればよい、というものではなく、かなり野心的な“向上”が必要なことがすぐにわかった。そこで、T2K phase IIとして、我々が提案するのは、以下の通り[15]。

- 現状425kWのJ-PARC MR強度を段階的に1.3MWまで増強する！
- 電磁ホーンの電流を現在の250kAから320kAに増強してニュートリノの収量を10%増やす。
- スーパーカミオンデの事象選択のアルゴリズムを改良し、使える事象数を40%増やす！
- 系統誤差を現在の2/3に削減する！(6%程度を4%程度に減らす)

どれも、やれるならきっちりとやってるでしょう。今やれていないのはできないからでしょう、と突っ込まれそうな項目である。が、これは現在の制限が何で決まっているのかを総密に吟味して立てた目標である。

加速器の強度に関しては、加速器グループと実験グループで議論を重ね、加速器グループから「これならば努力目標として一緒にがんばります」という練で作られたシナリオが図9である。現在進んでいる主電源やRF空間の更新、ビームロスの低減を見込んでいる。

図9:想定しているJ-PARC MRのビーム強度とデータ取得のシナリオ。積算取得データ量をPOT(標的に入射する陽子の数)で表している。

ニュートリノシナリオラインでは、ビームパワーの増強に対応するため、データ収集系やモニターのアップグレード、冷却能力の増強などに加えて、電磁ホーンの電流を250kAから320kAに増やすことを検討している。それに伴う電源周りを増強する。ローレンツ力によって電磁ホーンにかかるストレスは電流の2乗に比例するため装置が耐えられるかどうかを見極めながらあがることになる。ニュートリノの収量の増加は10%程度ではあるが、wrong sign 背景事象（反ニュートリノビームに混じっているニュートリノ）の混入を低減できる。

現在のSKの事象選択では、事象再構成の精度を保つために反応点の位置がPMTから2メートル以上とされている。これで、PMT内側の体積のうち31%が標的質量から除外されてしまう。壁近くで反応した場合でも、出てくる粒子が壁から遠ざかれる方向であれば、再構成の質はそれほど落ちないだろうと期待されるため、反応点の位置のカットをリングの方向によって変えることが検討されている。また、再構成されたチェレンコフリングが1個であることを要求しているが、電子ニュートリノ事象選択ではさらに、遅れて出てくるミューオん崩壊からの電子の検出数を0個としている。この場合、電子ニュートリノ事象だけでも荷電カレント反応でπ粒子を出すような事象が除外される。事象の再構成アルゴリズムを改良することで、このような事象も、背景事象から区別して選び出せば、検出効率を最大35%向上することができる。合計で40%の統計増を見越しているが、これらが可能かどうかは、これらの解析の腕の見せ所である。

系統誤差に関しては、現状、SKの検出効率の系統誤差、π粒子のハドロニック反応の不確定性、前照で測定後も残るニュートリノフラックスとニュートリノ反応の不確定性、前照で測定できていないニュートリノ反応の不確定性が、ほぼ同じくらいの割合で寄与していて、多面的に攻めていく必要がある。ニュートリノフラックスやπのハドロニックな反応については、外部データを使って（あるいは必要があれば外部データを新たに取る！）低減を目指す。SKや前照での測定についても、キャリプレーション法を改良するなどして不確定性を減らす。さらに前照検出器を大々的にアップグレードしよう、という議論も始まっている。

4.2 期待される精度

4.1に述べた努力をして得られる精度は図10である。これで、質量順列が順階層の場合の図で、逆階層の場合には、δCP=0で反転したもので図になる。2026年頃には、質量順列が他実験で決まっている可能性が高い。その場合、例えばsin²θ23=0.5の場合で、δCPの36%の領域でCP対称性の破れを3σで観測することが期待される。

また、混合角θ23に関しては、現在の測定結果は46±3°[16]と最も混和に近く、そこからのずれが見えるかどうかが焦点となっている。図11 は、sin²θ23=0.6 なおθ23=51°の場合に期待される90%C.L.領域で、最大混合からのずれが見える可能性がある。θ23の測定精度としては0.5°～1.7°, Δm232に関しては1%程度が
図 10: T2K Phase II の CP 対称性の破れに対する感受度。横軸は CP 位相の値、質量順序として順階層の場合の図。図 (a) は質量順序がどちらかかかっていない場合の感受度。図 (b) は、他の実験等で質量順序が決められた場合の感受度。期待される。

図 11: $\sin^2 \theta_{23} = 0.6$ の場合に期待される 90%C.L. 領域。

5 まとめ

多くの人の多大の努力で J-PARC MR は 425 kW のビーム強度を達成した。これまで長い道のりであったし、20 年に渡ってスーパーカミオンカドの超高性能を維持するのも大変であったと思う。2016 年の結果は CP の破れが見え始めてきたことを示しているのかもしれないが、それを確認するには、まだまだ長い期間と努力が必要である。長く続けている人間にとっては、装置の高い性能を維持する努力をつづけるということが一番、難しいのかもしれない。さらに、750 kW を超えて 1.3 MW を達成し、また 50% の解析効率の向上をするには多くの課題を解決せねばならず、腕試しをしてやろうという若い人の参入も必要だと思う。CP の破れの発見には着実に近づきつつあり、また未だ冗長で精密な測定がなされていないニュートリノについては、標準理論を超えているニュートリノ振動現象をさらに超えた現象が手の届く所にあるかもしれません。ぜひ、一緒にやりませんか？

参考文献

