1 はじめに

SuperKEKB 計画は、KEKB 計画に基づく次世代の B 中間子生成ファクトリーであり、2001 年より検討が始まった。高いエネルギーを目指す中で、高い統計量で精査できる新しい物理の探索を目指すものとする。この研究領域は、ルミノシティフロントラインであり、ルミノシティを、KEKB 加速器 [3, 4] の設計値の 10 倍以上の高さを目標としている。大規模なルミノシティが、まだ 3x10^{33} cm^{-2} s^{-1} にしか到達していない時期に 10^{45} cm^{-2} s^{-1} に到達するため、ルミノシティを目標とするのである。SuperKEKB 加速器の設計と並行して、KEKB 加速器の電流増加を推し進めてルミノシティが徐々に高まっていった。設計によりると、ほとんど全ての RF パルク (5120 のうち約 4800 パルク) にビーム 1 を誘導するはずであったが、電子雲の影響を完全に排除することができず、平均 30.6 パルク間隔で運転することを余儀なくされた。電子雲は陽電子ビームの垂直方向のビームサイズを増大させルミノシティ増加効率を悪化させる。この少ないパルク数で、電流増加を行ったためにパルク電流が大きい状態で運転することになる、加速器のハーフウェアに対して大きな負荷をかけることとなった。具体的には、高次のモードの電磁波によっ

SuperKEKB 加速器の研究機構 加速器研究施設
大西 幸喜
yukiyoshi.onishi@kek.jp

2018 年（平成 30 年）10 月 29 日

1 ビームとは、漠然とした「粒子のまとまり」を意味する。
2 フェーズ2コミッションの戦略と目標

ナノビーム方式では、横幅が狭いビームを大角度の交差角をつけて衝突させる。図1に示すように2つの衝突するビームの重なり領域は、菱形に近い形状となり、ビームの進行方向の広がりは、

\[\sigma_{z,eff} = \frac{\sigma_z}{\phi_z} \]

と書ける。ここで、\(\sigma_z \) は、衝突点での水平ビームサイズ、\(\phi_z \) は、交差角の半分である。斜めに傾いた細長いビームを適当な座標変換を施すと、パンチ長が\(\sigma_{z,eff} \)で水平ビームサイズが、

\[\sigma_{z,eff}^2 = \sigma_z^2 + (\sigma_z \phi_z)^2 \approx \sigma_z \phi_z \]

である仮想的なビームが正規衝突している描像と一致する。これらの2つの描像では、ルミノシティは同じである。したがって、ルミノシティを計算するときには、水平方向に幅が広く、非常に短いビームが衝突している"仮想ビーム"(effective beam)を用いる。

図1: ナノビーム方式による衝突の様子。 (a) 実際のビーム、(b) 射影した仮想的なビーム。

次に、砂時計効果について説明する。衝突点は、“点”であるのに対して、衝突するビームは進行方向に分布し、その標準偏差がパンチ長である。一方、衝突点を挟んで両側に設置された強力な凸レンズの働きをする4極磁石によって、ビームを絞り込むために、衝突点から離れるにしたがって横方向（水平または垂直方向）のビームサイズ、つまり断面積は広がっていく。これは、カーブスの被写界深度と同じ原理である。正面衝突や交差角の小さい従来の衝突方式では、ルミノシティは衝突領域の粒子密度に比例するので、パンチ長よりも被写
この条件が、従来の設計では課せられることで、\(\beta_y \) は衝突点における被写界深度を、\(\sigma_z \) は実際のバンチ長を表す。従来の衝突方式では、2つの衝突するビームの重なり領域は、バンチ長の2倍にほぼ等しく、被写界深度をバンチ長にかかわらず小さく（浅く）するとビントがやや出る。つまり、ラミノシティが上がらない。一方、ナノビーム方式では、前述した仮想的なビームを考えればよい。ビームの重なり領域は、実際のバンチ長の代わりに \(\sigma_{x_{e,ff}} \) に置き換える。大きな交差比を持たせて、衝突点における水平ビームサイズを小さくできれば、\(\sigma_{x_{e,ff}} \) を小さくすることができる。被写界深度を実際のバンチ長にくらべて小さく（浅く）してもビントが当たった状態を保つことができる。つまり、式 (3) は、ナノビーム方式では次のように変更される。

\[
\beta_y \geq \sigma_{x_{e,ff}} \frac{\sigma_z}{\Phi}
\]

ここで、\(\Phi \) は Piwinski 角と呼ばれる量で、衝突点における実際の水平ビームサイズに対する仮想ビームサイズの比率として

\[
\Phi = \frac{\sigma_{x_{e,ff}}}{\sigma_z}
\]

と定義される。従来の衝突方式では、Piwinski 角は \(\sim 1 \) 以下であるのでに対して、ナノビーム方式では約 10 ～20 を想定している。したがって、実際のバンチ長が 6 mm である場合、300 \(\mu \)m まで \(\beta_y \) を絞ることが可能となる。Piwinski 角を大きくするためには、大きな交差角、小さなエミットンス、水平方向の被写界深度である \(\beta_{x} \) を小さくする必要がある。フェーズ 2 では、Piwinski 角を約 10程度まで大きくして衝突調整を行った。

従来の正面衝突とナノビーム方式を比較した場合、ビームビーム・パラメータを無視して考えると、と仮砂時計効果が広がるビーム衝突が幾何学的にはラミノシティが高くなる。なぜなら、式 (2) にあるようにナノビーム方式では、衝突ビームのすれ違いによってロスする分が非常に大きいためである。SuperKEKB の最終的な設計パラメータを比較した場合、従来の正面衝突では、砂時計効果によって幾何学的には約 5 分の 1 に減少するが、ナノビーム方式では、Piwinski 角で示されると約 25 分の 1 となる。しかし、ビーム力学の観点からすると、従来の正面衝突では \(\sigma_{x} \) が非常に小さいため、後で述べるビームビーム・パラメータが大きくなるにかかわらず垂直方向のビームサイズ拡大しラミノシティは上がらない。すなわち、ナノビーム方式では、\(\sigma_{x} \) を小さくしてもビームビーム・パラメータが大きくならないことは、したがって、 \(\xi_{y} \) が必要になる。特に、 \(\xi_{y} \) は垂直方向のビームビーム・パラメータの可能性を示す。

\[
L = \frac{N_{x_{e}} N_{x_{i}} n_{i} f_{0}}{4\pi \sigma_{x_{e,ff}} \sqrt{\varphi_{y_{i}}} \beta_{y}} \approx \frac{\gamma_{y}}{2e_{c} \beta_{y}} \xi_{y} \frac{e_{y}}{\beta_{y}}
\]

ここで、\(N_{x_{e}} \) はバンチに含まれる電子または陽電子の粒子数、\(n_{i} \) はバンチ数、\(f_{0} \) は周波数 (SuperKEKB 加速器の場合、約 100 kHz)、\(\gamma_{y} \) はローレンツ因子、\(e_{y} \) は垂直エミットンスであり、垂直方向のビームサイズは \(\sigma_{y} = \sqrt{\varphi_{y_{i}}} \) となる。ところで、垂直方向のビームビーム・パラメータは

\[
\xi_{y} = \frac{r_{e} N_{x_{i}} \beta_{y}}{2 \pi \gamma_{y} \sigma_{x_{e,ff}} \sigma_{y}} = \frac{r_{e} N_{x_{i}}}{2 \pi \gamma_{y} \sigma_{x_{e,ff}} \sqrt{\varphi_{y_{i}}} e_{y}}
\]

と表せる。ここでは、電子と陽電子の垂直エミットンスおよび衝突点における垂直ベータ開閉角は等しいという仮定を設けた。式 (6) から、\(\beta_{y} \) を KEKB 加速器の 20 分の 1 まで小さくし、電流を 2 倍に増強すれば、KEKB 加速器の 40 倍のラミノシティを得ることができる。ただし、ビームビーム・パラメータ \(\xi_{y} \) は KEKB 加速器で得られる値と同等の値が要求される。式 (7) から、\(\beta_{y} \) を小さくしていくと、\(\xi_{y} \) は \(\sqrt{\varphi_{y_{i}}} \) に比例して小さくなるが、ラミノシティは、\(\sqrt{\varphi_{y_{i}}} \) に対して増大する。垂直エミットンス \(e_{y} \) がも、\(\beta_{y} \) と同じ比率で小さくすることことができれば、ビームビーム・パラメータ \(\xi_{y} \) は変わらず、ラミノシティが、\(\beta_{y} \) に対して増大する。したがって、垂直エミットンスを、いかに小さくできるかが重要なポイントとなる。通常の電子および陽電子の円形加速器では、本来垂直方向に散開がないために垂直エミットンスは非常に小さい。しかしながら、衝突型加速器に特有の測定器用ソレノイド磁場だけでなく、磁石設
3 フェーズ2 コミッションニング

フェーズ2を開始する前に、様々な問題が発生した。まず、衝突点最寄りのビーム位置モニターが設置されている真空チャンバーを衝突点チャネルと接続する段階で、ベローズ内のRFフィンガーが飛び出してしまって手で押し込んで修復したという事があった。フェーズ2終了後、開けてみるとRFフィンガーに放電痕が見つかった。Belle II測定器内部に設置するベローズ・チャンバーの冷却水漏れ事故もあった。このとき、漏れた水が中央飛跡検出器にかかってしまった。穴が空いてしまったので、普通に冷却水を流すことができず、その対策として(1)窒素ガスを流して温度を監視しながら空冷する、(2)負圧循環システムを導入して水冷する、(3)接着剤を流し込んで穴を塞ぐことが検討された。その時の結論は、まず(1)を行い、準備ができ次第(2)に移行するというものであったが、結局、フェーズ2期間中に負圧循環システムを使用することとなった。

上記で述べた問題の対策を施し、2018年3月19日より、最初にHERからのコミッションニングが開始された。QCSの設置誤差や磁石の磁場誤差を考慮して、アクセプタスを広く取るために、HERのβγを81 mmと大きくデチューンして閉軌道を探した。初めに、高周波加速空洞はオフして、ビームを回転させる仕事を試みた。これは、加速位相が最初にわからないためである。ビームはエネルギー補償を受けていても、運動量アクセプタンスが1%あれば、約25周する計算となる。QCSの磁場勾配は、もっとも大きいので、70 T/mであり、磁場強度すると23 Tとなる。また、QCSの物理物象が小さいところは、HERの場合で15 mmである。このように許容範囲が厳しく、QCSの設置誤差が約100 μmよりも大きくずれると、軌道に大きく歪み、閉軌道を探すことは非常に難しくなる。入射ビームは、リング内の要所所に設置されているターン毎ビーム位置モニター(TiBT BPM)で位置や強度が測定される。これを見てながら、水平・垂直方向のステアリング磁石を駆使して周回軌道を探した。最初の1周を見つけるのにかなり苦労したが、入射を始めまって日付が変わる頃にビームは約20周するようになった。このこととは、QCSの設置精度がかなり良かったことを示している。高周波加速空洞をオンして、加速位相の調整を行い3月21日早朝、HERに初めてビームを蓄積することができた。少ないビーム電流が蓄積できて軌道補正もある程度行ったが、ビームが積み増すことができないという問題が残った。入射ビームがリングに蓄積されるときに、蓄積ビームが繰り出されてしまうことが判明し、HER入射カッター6台のうち1台しか働いていなかったことがわかった。

HER入射カッター自体はフェーズ1では、すでに長期間にわたる運転を行っており、初歩的なミスであるのがゆえに特定するのに時間がかかった。このことは、ものがとの結果には必ず原因があるということを再確認されなければ出来了まい。思い込みの恐怖もまた痛感した。さらに、HERとLERを合わせて8台あるQCSの垂直ステアリングのうち、QC1(HERのL側)を除いて他の極性が設計と異なっていたことも後に判明した。これは電源ケーブルの接続を変更するのではなく、データベースの方を改修して対処した。

HERについては、3月26日からLERのコミッションングが開始された。LERの閉軌道を探す手順は、HERと同様である。LERのβγを48.6 mmとして、チョークしたオプティックスから出発した。しかしながら、入射のタイミングを決めるイベント・システムが1 Hz入射に対応できていなかったため26日のLER入射は諦め、手直しをして27日に入射調整を再開し、ビームを1周させることができた。3月28日に、入射へプラダ下流のビームモニター電極で真空漏れが発生し、その対処で一時中断したが、3月30日の深夜にビームをLERに初めて蓄積することができた。4月に入ってから、QC2(LERのL側)の水平ステアリングと粒子対称性の電源ケーブル接続が入れ替わっていたことが判明し、接続の

3電磁場遮蔽用の薄い板。
図 2: 日ごとの最高値、上段:HER のビーム電流、中段:LER のビーム電流、下段:ルミノシティ。
4 フェーズ2コミッションングの到達点

フェーズ2におけるLERのピーク電流は860 mA、HERにおいては800 mAであった。これは、当初LERのピーク電流4 Aを目指していたが、データ収集を続けつつ、発電点を向上させることを優先して調整時間を割り当てた結果である。6月中旬以降、大電流試験を時折行い上記で述べた最高電流に到達したが、LERで進行方向のピーケ電流不安定性が約850 mAから観測され、二度電流を増加することが難しくなった。この対策としてフェーズ3では、進行方向のバンチ毎フィードバックシステムを投入する予定である。フェーズ2におけるピーク・ルミノシティは5.55×10^5 cm^2 s^-1で、狙ったまでで大電流試験中に記録された。というのは、大電流試験中はTouschek寿命をなるべく長くするためEROの垂直エミッタを意図的に増大させて運転していたので、ルミノシティに過度化されたパラメータでのピーク・ルミノシティではないからである。

LERのピーク電流の最大値を340 mA、HERを285 mAに設定しバンチ数を789バンチとして、ルミノシティ・ランを本格的に開始したのは、ゴールデンウィーク前の5月中旬になってからである。図4に日ごとの積分ルミノシティを示す。6月から7月中旬かけての40日間ににおけるルミノシティ・ランの記録である。基本的に、日中と夜は加速器調整およびスタディに費やされ、深夜0時から朝9時まではルミノシティ・ランに充てられた。この40日間に加速器が供給した積分ルミノシティは、1853 pb^-1で、測定器が記録したのは454 pb^-1であった。6月中旬まで効率は約60%であったが、ルミノシティが約2倍に向上してからは、記録された積分ルミノシティは横ばいで、効率が20%～30%に低下している。本来的な物理ランではないのだから気にするなと言われるかもしれないが、この原因を早急に調査すべきであると思う。
フェーズ２の期間中は、連続入射モードでのデータ収集は行われなかった（感度を得るための試験は行った）。したがって、ビーム電流を積み上げてデータ収集を開始し、ビーム電流が低くなった後はデータ収集を停止して再入射を行う前進後の運転モードで、積分ルミノシティの効率は、連続入射モードよりも低下する。効率を上げるためだけでなく、ルミノシティ調整という観点からビーム電流はなるべく一定に保つ方が調整が容易になるので、フェーズ３では是非とも連続入射モードを確立したいと考えている。

4.1 ルミノシティ性能

スペシフィック・ルミノシティを次のように定義する。

\[L_{sp} = \frac{L}{n_{b} \Delta I_{b}} = \frac{1}{4\pi \sigma_{z} \sigma_{y} e^{2} f_{0} \sigma_{y}^{2}} \]

\[= \frac{1.25 \times 10^{25}}{\sigma_{y}^{2}} \frac{[cm^{-2}s^{-1}/mA^{2}]}{ (8) } \]

ここで、\(I_{b} \)はパンチ電流である。一方、ルミノシティから逆算できる HER と LER の平均的な垂直ビームサイズは、

\[\sigma_{y}^{*} = \sqrt{\frac{\sigma_{y}^{2} + \sigma_{y}^{2}}{2}} \approx \frac{\sqrt{\varepsilon_{y} + \varepsilon_{y}}}{2} \]

\[= \frac{r_{1} + r_{2} \Delta s}{\beta^{*}_{y}} \frac{(\Delta s)^{2}}{\beta^{*}_{y}} + (r_{1} + r_{3} \Delta s)^{2} (10) \]

と表される。スペシフィック・ルミノシティは、垂直ビームサイズのみに依存し、ビーム電流によってサイズが変化しなければ一定となるものである。ここでは、LER と HER の \(\beta^{*}_{y} \) は同じ値である。図 5 は、スペシフィック・ルミノシティが \(\beta^{*}_{y} \) によって、どのように変化するかを示している。スペシフィック・ルミノシティは、少なくとも \(1/\sqrt{\sigma_{y}^{2}} \) に比例すべきものであり、\(\beta^{*}_{y} \) とともに同じ比例で \(\varepsilon_{y} \) が小さくなっているければ \(1/\beta^{*}_{y} \) に比例する。

大増的なオプティクス補正を施して、単一リングにおける垂直エミッタンスは十分に小さく 10 〜 20 pm 程度まで到達しているにもかかわらず、\(\beta^{*}_{y} \) をパンチ長より小さく絞ってもスペシフィック・ルミノシティが上がらないという問題に直面した。図 5 を見ると、\(\beta^{*}_{y} \) を 6 mm から 4 mm または 3 mm に小さくしても、スペシフィック・ルミノシティは横ばいで、10^{-11} cm^{-2}s^{-1}/mA^{2} 程度を推移している。

はじめ何が起きているのか見当がつかなかったが、QCS の 4 极磁石が意図に反して、わずかに回転してい ると仮定すると説明できることがわかった。ハードウェアとしての誤差評価については、文献 [10] に詳細に述べられている。LER と HER、それぞれのリングにおいて、4 台の 4 极磁石を折りたって最も近い 2 台の QC1 磁石が、左右で同じ量だけ逆向きに回転している場合、QCS の外側では XY 結合による垂直ビームサイズの増加は観測されない。また、左右で異なる回転角のためは大増的なオプティクス補正によって XY 結合は補正されてしまうので、よりも量的逆回転誤差が粗る。これは、左右の QC1 の位相差が π に近いために起きる局所的な XY 結合で QC1 で補正するべきものである。局所的な XY 結合とウエスト (衝突点におけるビームサイ ズの極小値) が設計場所と異なることによって、衝突点の垂直ビームサイズの 2 乗は次のように大きく見える。

図 5: スペシフィック・ルミノシティ。横軸は \(\beta^{*}_{y} \)。青丸 は、マシンエラーの補正前。赤丸は補正後。
ルミノシティ・ランで、調整が進みスペシフィック・ルミノシティが向上していく様子を図6に示した。LERとHERのバンチ電流積にバンチ数を掛けたものを横軸としているので、式（8）より、ある一定のルミノシティの双曲線が等高線として図に描かれる。高バンチ電流運転（7月3日）も図6に示されているが、これはバンチ電流を変えずにバンチ数を395から1576倍に増やすと、LERの電流が約1Aとなるパラメータである。このとき得られたルミノシティをLERのビーム電流約1Aに外挿すると、9×10^{33} cm^{-2}s^{-1}となり、ほぼ10^{34}に近い。

図6: スペシフィック・ルミノシティ。横軸はLERとHERのバンチ電流積にバンチ数を掛けたもの。ルミノシティの等高線も合わせて表示している。

ルミノシティ・ランと高バンチ電流運転におけるスペシフィック・ルミノシティとバンチ電流積の関係を、図7に示した。これを見ると、非常に小さなバンチ電流では高いスペシフィック・ルミノシティが得られているが、急激に下がって、バンチ電流値が増加するとともにビームビーム・プロアップによってスペシフィック・ルミノシティが徐々に下がっていく傾向にある。非常に小さなバンチ電流におけるσ^2_bは、単一ビームにおけるX線ビームサイズモニターによる観測とほぼ一致する。したがって、上で述べた線形なマシンエラーは、ある程度補正できていると思われる。スペシフィック・ルミノシティの低下傾向は、運動量のずれた領域にあらわれる非線形なマシン・エラーを入れるとある程度、粒子トラッキング・シミュレーションから説明できるものであるが、まだ完全に理解されておらず、今後の研究課題の一つである。垂直方向のビームビーム・パラメータもスペシフィック・ルミノシティと似た傾向にあり、バンチ電流が増加するにつれてビームビーム・パラメータも増加するが、あるバンチ電流値から頭打ちになる傾向が見えてくる。フェーズ2で得られた垂直方向のビームビーム・パラメータは、0.021で目標の0.03には届いていないが、これもフェーズ3における課題であり、今後はビームビーム・プロアップとの長い戦いがつつづくことになる。

図7: スペシフィック・ルミノシティ。横軸はLERとHERのバンチ電流積。

図8: LERにおける垂直方向のビームサイズ。横軸はRFパケット間隔で規格化したバンチ電流。3つのフィルバートンが示されており、それぞれトレイン数/トレインあたりのバンチ数/RFパケット間隔が表示されており、RFパケット間隔によって差がないことがわかる。

4.2 電子雲効果

陽電子リングであるLERに特有な現象として、電子雲効果によって垂直方向のビームサイズがプロアップしてルミノシティを制限するというものがある。フェーズ1では、TiNコーティングされたアンテナコンバーに加えて永久磁石で構成されるソレノイド磁石をベロー補正部に設置したが、RFパケット間隔あたりのバンチ電流が、0.2mAのしきい値を超えるとビームサイズのプロアップが観測された。フェーズ1では電子雲観測をもとにフェーズ2では、電子雲対策の永久磁石が自由空間に設置された。図8に、RFパケット間隔で規格化したバンチ電流に対する垂直ビームサイズの応を示す。バンチ数はすべて480バンチである。バンチとバンチの間隔、RFパケット単位で、2RFパケット、3RFパケット、4RFパケットと変えるなら、X線ビームサイズモニターを
表1：フェーズ2におけるマシン・パラメータ。比較のために、フェーズ3における最終的なパラメータも示す。σ_y*は、X線ビームサイズモニターによって推定される衝突点における垂直ビームサイズ。ν_{x,y}はベータトロン・チューン。
図9: 1日あたりのQCSエンチ数

クエンチは入射システムの不具合や人為的なミスによるものである。さらに5月末より、衝突点近くのダイヤモンド・センサーによる高速ビームアポート・システムを導入してから6月下旬までの約1ヶ月間は、β₀を絞り込む調整を行ったがQCSクエンチは起こらなかった。しかしながら、β₀を3mmに絞った後、6月末からビーム電流を600mA以上に積み始めたところで、再びQCSクエンチが起こるようになった。ほとんどのQCSクエンチは、ビームを事前にあり原因が不明であった。外気温が30度を超える暑い日が続き、電源などの機器の冷却をしなくてもスプットクーラーを使った建物のシャッターを開けて外気を取り入れるなど通常の運転では行わない対策をしなければならない時期であった。これにより、必ずしもビーム運転が安定であるとは言えない印象があった。

このような6月末から7月中旬の運転終了にかけて発生したQCSクエンチの中には、可動コリマーターヘッドに損傷を負う事象がLERとHERそれぞれが発生した。損傷したコリメータは、いずれも約2mmまで物理口径を狭めた小型の垂直コリメータである。これらの事象は、LERは約700mA、HERは約750mAのビーム電流を蓄積中に起こており、大きな軌道変動やビーム不安定性は観測されていない。ただし、問題のコリメータ周辺の真空圧力が急激に高くなることが観測されたので、可動コリメータに異常があることがすさまじく疑われた。可動コリメータのヘッドに蓄積しているビームが当たって、エネルギーを損失したビームのQCSに飛び込んでるものと考えられる。その結果、ビーム進行方向に沿ってヘッドに溝と棘ができてしまった。棘ができたために、入射ビームがベクタトロン振動をする棘に当たることがあり、大きなビーム・バックグラウンドの原因となった。こうしたコリメータ・ヘッドの損傷は、KEK加速器時代にも経験していたが、今回は、まず様子を見るために局所の遮蔽下での確認を行った後に、可動コリメータを水平方向に約2mm移動させて棘をビーム軌道からずらすことで対処した。また、メンテナンス日には、真空チャンバーに設けられた観察窓からコリメータ・ヘッドを観察して溝と棘の確認を行った。可動コリメータのヘッドに蓄積しているビームが当たった原因は不明であるが、ダスト・トラッピングによるダスト粒子とビームが衝突して起こることがあるが、これを防止するための対策として、これを発生前に、ノッカーをかけることでチェンバーに衝撃を与えてダスト粒子を流し出すとしておくという処置がなされた。これにより、ダスト粒子による真空バーストは、かなり減少したがダスト・トラッピングが可動コリメータ付近で発生した可能性が高いとは言えない。コリメータ・ヘッドの損傷原因はフェーズ3においても経続的に追求されている。QCSクエンチ対策として、フェーズ3前までに可動コリメータを追加で設置し、長期的な視野に立ってタングステン・シールドをQCSに組み込むことなどの検討が進められている。

測定器に対するバックグラウドは、入射ビームによるものと蓄積ビームによるものに分けられる。入射ビームによるバックグラウドは、コリメータ調整によって改善するところを見つけることができるほど続きしないという印象であった。入射システムが時間的に変化していることや許容範囲がもともと狭いということが考えられ、入射ビームのエミッタンスが想定した値より大きくなればなるほどバックグラウドを制御することが难しくなる。HERの入射ビームは、エミッタンスの小さいRF電子線を使用することが望ましかったが、電子と陽電子ビームの同時入射が可能であるという理由によりエミッタンスの大きい熱電子線を、定常的に使われるを得なかった。これには、入射器上流側の初期設計によるもので、フェーズ3ではRF電子線も同時入射に使えるようになる。熱電子線でも、計算上問題はないはずであるが実際のところRF電子線の方が入射バックグラウドが少ないという印象があった。また、LER入射に関しても陽電子ダミンググリングによってエミッタンスは小さくなっているはずであるが、後につくって輸送器でエミッタンス増大しているという観測結果がある。入射軌道や入射エネルギーなどはフィードバックしてはいるが、まだ改善されていないバラメータがあるかもしれない。

蓄積ビームによるバックグラウドは、真空圧力に依存する残留ガスとのクローン散乱や制動射度、バンチ内粒子散乱によるTouschek散乱、ルミノソニティに依存する放射BhaBha散乱などがある。また、ビームから放出された放射光が真空チャンバーの壁に反射して測定器に飛び込んでバックグラウドとなる場合がある。
6 終わりに

フェーズ2運転は、当初5ヶ月の予定であったが、様々なスケジュールの遅れや運転直前になってからの問題発生などにより1ヶ月の運転となってしまった。1ヶ月間短縮したコラボレーション計画の立案および実行には苦労した。数あるスタッフ提案のうち、重要度の高いものから優先的に行われた。4ヶ月間といっても、暑さを避けるために6月末で通常終了するところを7月中旬まで延長して運転時間を確保した。梅雨明けが遅くなければいいと思うながらも、今年の夏は異常な早い梅雨明けで、しかも酷暑であった。したがって、大電流を積んで本格的にビック・ルミノシティを目指そうとしたフェーズ2後半は、暑さとも戦わなければならなかった。初ハドロン事象を観測してから、ゴールデンウィークを挟んで1ヶ月も経たないように10^{33} cm^{-2} s^{-1}を超えるルミノシティに到達した。最適化されたルミノシティではないが、フェーズ2におけるルミノシティの最高値は5.55×10^{33} cm^{-2} s^{-1}であった。実際に、ルミノシティ調整に費やすことができたのは全体のうち約2ヶ月弱であった。この短い期間で、これまで述べてきた成果を得ることができたことは意義があったと思う。 KEKB 加速器時代に蓄積された経験をもとに SuperKEKB 加速器のためにもスーパーケーク KEKB 加速器のためにも2004年から加速器設計とビーム力学の検討を行い、加速器制御システムの高度化に努力してきた結果観客見を現実化させた。

KEKB アップグレード検討会（SuperKEKB（仮））という名称を始まって以来、17年の歳月を経て、ようやくフェーズ2コラボレーションまで辿り着いた。2018年、我々はルミノシティという高い山の頂上を目指して歩き始めたばかりである。図6は、ある意味のようにして山に登るかを示すガイドマップである。目標とする頂上は遅かかとなたが、まだ見えない。フェーズ2では、ナノビーム方式の検証を重点的に行なってきたが、やっと登山口から少し登ってベースキャンプを設営したところだろうか。フェーズ3からは高いルミノシティを目指して、頂上アタックを試みることになるが、ビームビーム・ブローアップとビーム・バックグラウンドとの長い戦いが続くことだろう。

謝辞

SuperKEKB加速器フェーズ2コラボレーションの記録として、記事を執筆してみてはどうかと提案してくださった高エネルギー物理ニュース編集委員のみなさんに感謝いたします。シニアな方々は時々書くとして、もっと若い私たちが自己アピールの場として高エネルギーニューズに記事をどうしろと依頼して、活発な議論の場となることを願っています。

参考文献