2019年4月9日～10日の日程で、スイス・ローザンヌのスイス連邦工科大学ローザンヌ校（EPFL）にて、「Linear Collider Community Meeting」が開催された。この会議は日本政府を含むその後のLinear Collider Communityの方針、特に5月にブラジルで開催されるEuropean Strategy Open Symposiumへの対策を協議することを目的としている。

本会議にはCERN Director GeneralのFabiola Gianotti氏、KEKの山内正則機構長、Linear Collider Board（LCB）Chairの中田達也氏（ホストでもある）、Linear Collider Collaboration DirectorのLyn Evans氏をはじめ多くの重要人物が集まった。

参加登録者は全部で93名、うち日本の参加者は12名であった。ILCの国内での実現のためにEuropean Strategyでのリアリティの取扱いは慎重であり、日本ILCコミュニティとともに本会議を重要視し日本のILC研究者を代表する人々が参加した。

本稿ではいくつかの重要なトピックを取り上げる。

1. 日本政府の表明とKEKの方針

2019年3月7日のICFA/LCB会議において、文科省による「現時点では誇張発言には至らないが、ILC計画に関心を持って国際的な意見交換を継続する[1]」という主旨の方針表明があった。これを受け、山内機構長から、

「1. 文科省と密接な連絡のもと、KEKに国際ワーキンググループを設立し、ILCの国際費用分担・組織・技術開発協力について議論する。

2. 日本学術会議のマスタープランへの提案やシンポジウムを通して国内学術コミュニティの理解を推進。

3. 文科省によるドイツ・フランスとのディスカッショングループ設立および米国とのディスカッショングループ強化に協力。

4. 国際協力によるR&Dに注力」

という行動計画が発表された[2]。このうち、1つめの国際ワーキンググループについては、これまでの研究者のみによる議論と異なり、文科省の「期待」によるグループであり、文科省と密接な連携の上で進められる。国際ワーキンググループの結果が出るのは9月頃を予定し、その結果（特に国際費用分担の案）は政府の欧米とのディスカッションに活用されることを想定したものとなる。この4つの方針は概ね好意的に受け止められたが、機構長が示したタイムライン（図1）に関して、European Strategyの ₹タイムスケール（本年5月のブラジルでのOpen Symposium、来年5月のDrafting session、来年5月の最終決定）に間に合うように日本政府からのさらなる表明（グリーンライン）がなければ、欧州でのILC協力は難しいと見られる。ただし、いつが実際のdeadlineか、どのような表明が必要かについては、一致した見解はないと考えられる。機構長からは、早い段階での政府表明が得られるよう努力するとのコメントがあった。

図1：内閣府長官が示したILC実現までのタイムライン（図は5月のTYL/JFJPL workshopで岡田理事が示した同内容のものを転載）。図中央やや右のStart negotiationで始まる総長のボックスがいわゆる「グリーンライン」である。（本文を参照）
2 CERN の将来計画と European Strategy

CERN DG の Fabiola Gianotti 氏からは CERN の開発予算の現状から CLIC (CERN の常伝導電子陽電子リニアライダー）と FCCee (100 km のトンネルを持つ円形の電子陽電子コラーセイナー）の同計画を本格的に推進することは難しく、今回議論されている European Strategy の期間(2020年～)では、どちらかの計画に絞って推進することが現実的だという主旨の表明があった。グラナダでの Open Symposium およびその後の Drafting session においては Linear vs Circular が議論の一つの焦点となると考えられる。CLIC の初期計画 (380 GeV) は FCCee とは異なり CERN の通常予算の範囲内で建設・運転が可能との認識であり、これは CLIC の大きなメリットの一つである。拡張性については CLIC は TeV 以上のエネルギーへのアップグレードを、FCCee は究極的にはハドロンシングラー(FCCsh)に置き換えることを目指しているが、CLIC は電力消費の面で、FCCsh は超伝導磁石の問題と予算が膨大なことから困難が多く、特に FCCsh の実現はかなり将来のこととなる。ヒッグスファクトリーとしての性能については、FCCee ゴールミノティの点ではやや優位であるものの、電子・陽電子偏極の効果や、予算規模が違うことから考慮するとどちらが総合的に優位とは一概に言えないと考えられる。FCCee の一部の研究者による比較図はミスタリーディングであり、グラナダ等の議論においてそのような一方的な見方に基づいて議論が進まないよう注意することが確認された。

3 CLIC と ILC の関係

CLIC と ILC は「リニアコライダー」として協力関係にあるが、「両方ができるわけではない」という暗黙の了解もある。今回の会議では、CLIC と ILC は「同じ計画の異なる実現形態である」という見解が確認され、グラナダでは 500 GeV 以上の高エネルギー電子陽電子衝突を将来的に可能とする「リニアコライダー」の実現を目指すという方針が確認された。

4 Meeting Summary

会議における Discussion session での意見交換およびその後のメールベースによる意見交換を経て、Meeting Summary が 5 月 8 日に公開された[3]。Meeting Summary は 3 章からなり、はじめの「2019年4月のローザンヌにおけるリニアコライダーミーティングの結論」では、まず標準モデルを越える新物理の探索のため、電子陽電子衝突によるヒッグスやその他の粒子の精密測定、ハドロン相互作用で観測が難しい現象の直接探求の重要性が述べられている。その上で、ヒッグス精密測定等に適した初期エネルギーとルミノシティを持つ電子陽電子リニアコライダーが、最も費用対効果がよく、早期に建設が可能で、多彩な結果を生むアプローチであると強調されている。またリニアコライダーが更に将来の加速器への道を開くとともに、将来のアップグレードを含む長期の電子陽電子物理プログラムを推進できることを述べている。最後にリニアコライダーは速やかに建設が開始され、2035年頃までに実験開始すべきであり、そのためにここに LC ができるようにヨーロッパと CERN の主導的な役割が必要と述べている。

2 章目の「リニアコライダーの背景と必要性」主要な論点のまとめでは、1 章目のまとめをサポートする議論が進められ、リニアコライダーのクリーンな環境による精密測定、新技術等による長期にわたるアップグレード可能性、産業応用の広い加速器科学との連携について議論され、ILC と CLIC がいずれも 15 年程度の期間と LHC 建設時と同程度のリソースで建設できることを示している。また、次世代ハドロンコライダー・ミュonioオンコライダー等は実現のため技術革新が必要であり、それらはリニアコライダーの運転中に進められることも論じている。

3 章目の「計画の詳細」では、CERN における実現計画である CLIC と日本における実現計画である ILC について対照しながら論じている。主要パラメータについて述べたあと、CLIC については、必要な常伝導加速器技術が成熟した施策に達し、世界中の加速器計画で活用され始めていること、LHC 後の計画として魅力的であり、CERN で建設される将来コライダーとして最もオプションと考えられるとしている。ILC については、ヨーロッパで超伝導加速技術は成熟しており、すでに利用されていることも、世界中から注目されている計画でありヨーロッパは長年主要な貢献をしてきたこと、建設準備が完了しておりヨーロッパの粒子物理コミュニティ、技術センター、産業界は参加する準備ができていることを示し、日本における 250 GeV の ILC はヨーロッパの強力な貢献により、リニアコライダーの魅力的な実現形態となると締めくくられている。

この Meeting Summary は、グラナダやその後の European Strategy プロセスでの議論において、リニアコライダー・ミニュニティに対する科学的、技術的、戦略的な共通ビジョンを提供する役割を期待するメッセージとともに発信された。本稿は著者の私的な抄訳であり、より正確には参考文献[3]の原文を参照された。

参考文献